Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Iran J Med Sci ; 47(4): 338-349, 2022 07.
Article in English | MEDLINE | ID: covidwho-1934946

ABSTRACT

Background: The present study aimed to evaluate the effectiveness of ultra-low-dose (ULD) chest computed tomography (CT) in comparison with the routine dose (RD) CT images in detecting lung lesions related to COVID-19. Methods: A prospective study was conducted during April-September 2020 at Shahid Faghihi Hospital affiliated with Shiraz University of Medical Sciences, Shiraz, Iran. In total, 273 volunteers with suspected COVID-19 participated in the study and successively underwent RD-CT and ULD-CT chest scans. Two expert radiologists qualitatively evaluated the images. Dose assessment was performed by determining volume CT dose index, dose length product, and size-specific dose estimate. Data analysis was performed using a ranking test and kappa coefficient (κ). P<0.05 was considered statistically significant. Results: Lung lesions could be detected with both RD-CT and ULD-CT images in patients with suspected or confirmed COVID-19 (κ=1.0, P=0.016). The estimated effective dose for the RD-CT protocol was 22-fold higher than in the ULD-CT protocol. In the case of the ULD-CT protocol, sensitivity, specificity, accuracy, and positive predictive value for the detection of consolidation were 60%, 83%, 80%, and 20%, respectively. Comparably, in the case of RD-CT, these percentages for the detection of ground-glass opacity (GGO) were 62%, 66%, 66%, and 18%, respectively. Assuming the result of real-time polymerase chain reaction as true-positive, analysis of the receiver-operating characteristic curve for GGO detected using the ULD-CT protocol showed a maximum area under the curve of 0.78. Conclusion: ULD-CT, with 94% dose reduction, can be an alternative to RD-CT to detect lung lesions for COVID-19 diagnosis and follow-up.An earlier preliminary report of a similar work with a lower sample size was submitted to the arXive as a preprint. The preprint is cited as: https://arxiv.org/abs/2005.03347.


Subject(s)
COVID-19 , COVID-19 Testing , Humans , Lung/diagnostic imaging , Prospective Studies , Radiation Dosage , Tomography, X-Ray Computed/methods
2.
Comput Biol Med ; 145: 105467, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763671

ABSTRACT

BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.


Subject(s)
COVID-19 , Lung Neoplasms , Algorithms , COVID-19/diagnostic imaging , Humans , Machine Learning , Prognosis , Retrospective Studies , Tomography, X-Ray Computed/methods
3.
Radiol Case Rep ; 17(5): 1789-1793, 2022 May.
Article in English | MEDLINE | ID: covidwho-1757766

ABSTRACT

Acute disseminated encephalomyelitis (ADEM) is an acute demyelinating disorder of the central nervous system that is ordinarily monophasic. ADEM can develop following infection or vaccination. Here, we present a 37 y/o male patient with progressive muscle weakness in all limbs along with dysphagia following COVID-19 vaccination. Brain magnetic resonance imaging (MRI) revealed typical imaging findings which presented as multifocal T2-FLAIR signal changes in the corticospinal tract, pons, and temporal lobe with diffusion restriction. Magnetic resonance spectroscopy (MRS) further confirmed the diagnosis by the typical elevation of the Choline and Myoinositol peaks. Neurologic impairments have been reported as the potential side effects of COVID-19 vaccines. Appropriate imaging modalities together with a thorough clinical examination are essential for making a correct diagnosis.

4.
Emerg Med Int ; 2021: 4188178, 2021.
Article in English | MEDLINE | ID: covidwho-1325175

ABSTRACT

BACKGROUND: The lack of enough medical evidence about COVID-19 regarding optimal prevention, diagnosis, and treatment contributes negatively to the rapid increase in the number of cases globally. A chest computerized tomography (CT) scan has been introduced as the most sensitive diagnostic method. Therefore, this research aimed to examine and evaluate the chest CT scan as a screening measure of COVID-19 in trauma patients. METHODS: This cross-sectional study was conducted in Rajaee Hospital in Shiraz from February to May 2020. All patients underwent unenhanced CT with a 16-slice CT scanner. The CT scans were evaluated in a blinded manner, and the main CT scan features were described and classified into four groups according to RSNA recommendation. Subsequently, the first two Radiological Society of North America (RSNA) categories with the highest probability of COVID-19 pneumonia (i.e., typical and indeterminate) were merged into the "positive CT scan group" and those with radiologic features with the least probability of COVID-19 pneumonia into "negative CT scan group." RESULTS: Chest CT scan had a sensitivity of 68%, specificity of 56%, positive predictive value of 34.8%, negative predictive value of 83.7%, and accuracy of 59.3% in detecting COVID-19 among trauma patients. Moreover, for the diagnosis of COVID-19 by CT scan in asymptomatic individuals, a sensitivity of 100%, specificity of 66.7%, and negative predictive value of 100% were obtained (p value: 0.05). CONCLUSION: Findings of the study indicated that the CT scan's sensitivity and specificity is less effective in diagnosing trauma patients with COVID-19 compared with nontraumatic people.

5.
Acad Radiol ; 28(10): 1331-1338, 2021 10.
Article in English | MEDLINE | ID: covidwho-1225101

ABSTRACT

OBJECTIVES: To investigate the chest CT and clinical characteristics of COVID-19 pneumonia and H1N1 influenza, and explore the radiologist diagnosis differences between COVID-19 and influenza. MATERIALS AND METHODS: This cross-sectional study included a total of 43 COVID-19-confirmed patients (24 men and 19 women, 49.90 ± 18.70 years) and 41 influenza-confirmed patients (17 men and 24 women, 61.53 ± 19.50 years). Afterwards, the chest CT findings were recorded and 3 radiologists recorded their diagnoses of COVID-19 or of H1N1 influenza based on the CT findings. RESULTS: The most frequent clinical symptom in patients with COVID-19 and H1N1 pneumonia were dyspnea (96.6%) and cough (62.5%), respectively. The CT findings showed that the COVID-19 group was characterized by GGO (88.1%), while the influenza group had features such as GGO (68.4%) and consolidation (66.7%). Compared to the influenza group, the COVID-19 group was more likely to have GGO (88.1% vs. 68.4%, p = 0.032), subpleural sparing (69.0% vs. 7.7%, p <0.001) and subpleural band (50.0% vs. 20.5%, p = 0.006), but less likely to have pleural effusion (4.8% vs. 33.3%, p = 0.001). The agreement rate between the 3 radiologists was 65.8%. CONCLUSION: Considering similarities of respiratory infections especially H1N1 and COVID-19, it is essential to introduce some clinical and para clinical modalities to help differentiating them. In our study we extracted some lung CT scan findings from patients suspected to COVID-19 as a newly diagnosed infection comparing with influenza pneumonia patients.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Cross-Sectional Studies , Female , Humans , Influenza, Human/diagnostic imaging , Influenza, Human/epidemiology , Lung , Male , Observer Variation , Radiologists , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
6.
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization ; : 1-10, 2021.
Article in English | Taylor & Francis | ID: covidwho-1099539
7.
Clin Breast Cancer ; 21(1): e136-e140, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064943

ABSTRACT

As the Coronavirus disease 2019 (COVID-19) epidemic begins to stabilize, different medical imaging facilities not directly involved in the COVID-19 epidemic face the dilemma of how to return to regular operation. We hereby discuss various fields of concern in resuming breast imaging services. We examine the concerns for resuming functions of breast imaging services in 2 broad categories, including safety aspects of operating a breast clinic and addressing potential modifications needed in managing common clinical scenarios in the COVID-19 aftermath. Using a stepwise approach in harmony with the relative states of the epidemic, health care system capacity, and the current state of performing breast surgeries (and in compliance with the recommended surgical guidelines) can ensure avoiding pointless procedures and ensure a smooth transition to a fully operational breast imaging facility.


Subject(s)
Breast/diagnostic imaging , COVID-19/prevention & control , Delivery of Health Care/standards , Ambulatory Care Facilities/organization & administration , Ambulatory Care Facilities/standards , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , COVID-19/epidemiology , Delivery of Health Care/methods , Female , Humans , Image-Guided Biopsy , Mammography , Practice Guidelines as Topic , SARS-CoV-2 , Safety
8.
Transl Med Commun ; 6(1): 3, 2021.
Article in English | MEDLINE | ID: covidwho-1045590

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has profoundly affected the lives of millions of people. To date, there is no approved vaccine or specific drug to prevent or treat COVID-19, while the infection is globally spreading at an alarming rate. Because the development of effective vaccines or novel drugs could take several months (if not years), repurposing existing drugs is considered a more efficient strategy that could save lives now. Statins constitute a class of lipid-lowering drugs with proven safety profiles and various known beneficial pleiotropic effects. Our previous investigations showed that statins have antiviral effects and are involved in the process of wound healing in the lung. This triggered us to evaluate if statin use reduces mortality in COVID-19 patients. RESULTS: After initial recruitment of 459 patients with COVID-19 (Shiraz province, Iran) and careful consideration of the exclusion criteria, a total of 150 patients, of which 75 received statins, were included in our retrospective study. Cox proportional-hazards regression models were used to estimate the association between statin use and rate of death. After propensity score matching, we found that statin use appeared to be associated with a lower risk of morbidity [HR = 0.85, 95% CI = (0.02, 3.93), P = 0.762] and lower risk of death [(HR = 0.76; 95% CI = (0.16, 3.72), P = 0.735)]; however, these associations did not reach statistical significance. Furthermore, statin use reduced the chance of being subjected to mechanical ventilation [OR = 0.96, 95% CI = (0.61-2.99), P = 0.942] and patients on statins showed a more normal computed tomography (CT) scan result [OR = 0.41, 95% CI = (0.07-2.33), P = 0.312]. CONCLUSIONS: Although we could not demonstrate a significant association between statin use and a reduction in mortality in patients with COVID19, we do feel that our results are promising and of clinical relevance and warrant the need for prospective randomized controlled trials and extensive retrospective studies to further evaluate and validate the potential beneficial effects of statin treatment on clinical symptoms and mortality rates associated with COVID-19.

9.
Rev Cardiovasc Med ; 21(4): 493-495, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1005375
12.
Acad Radiol ; 27(8): 1189, 2020 08.
Article in English | MEDLINE | ID: covidwho-245396
13.
Acad Radiol ; 27(7): 1044-1045, 2020 07.
Article in English | MEDLINE | ID: covidwho-155477
SELECTION OF CITATIONS
SEARCH DETAIL